Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Helicobacter ; 26(2): e12777, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33368895

RESUMO

Helicobacter pylori is a major chronic health problem, infecting more than half of the population worldwide. H. pylori infection is linked with various clinical complications ranging from gastritis to gastric cancer. The resolution of gastritis and peptic ulcer appears to be linked with the eradication of H. pylori. However, resistance to antibiotics and eradication failure rates are reaching alarmingly high levels. This calls for urgent action in finding alternate methods for H. pylori eradication. Here, we discuss the recently identified mechanism of H. pylori known as cholesterol glucosylation, mediated by the enzyme cholesterol-α-glucosyltransferase, encoded by the gene cgt. Cholesterol glucosylation serves several functions that include promoting immune evasion, enhancing antibiotic resistance, maintaining the native helical morphology, and supporting functions of prominent virulence factors such as CagA and VacA. Consequently, strategies aiming at inhibition of the cholesterol glucosylation process have the potential to attenuate the potency of H. pylori infection and abrogate H. pylori immune evasion capabilities. Knockout of H. pylori cgt results in unsuccessful colonization and elimination by the host immune responses. Moreover, blocking cholesterol glucosylation can reverse antibiotic susceptibility in H. pylori. In this work, we review the main roles of cholesterol glucosylation in H. pylori and evaluate whether this mechanism can be targeted for the development of alternate methods for eradication of H. pylori infection.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Colesterol , Glucosiltransferases , Humanos
2.
mBio ; 11(5)2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963006

RESUMO

Carcinoma of the gallbladder (GBC) is the most frequent tumor of the biliary tract. Despite epidemiological studies showing a correlation between chronic infection with Salmonella enterica Typhi/Paratyphi A and GBC, the underlying molecular mechanisms of this fatal connection are still uncertain. The murine serovar Salmonella Typhimurium has been shown to promote transformation of genetically predisposed cells by driving mitogenic signaling. However, insights from this strain remain limited as it lacks the typhoid toxin produced by the human serovars Typhi and Paratyphi A. In particular, the CdtB subunit of the typhoid toxin directly induces DNA breaks in host cells, likely promoting transformation. To assess the underlying principles of transformation, we used gallbladder organoids as an infection model for Salmonella Paratyphi A. In this model, bacteria can invade epithelial cells, and we observed host cell DNA damage. The induction of DNA double-strand breaks after infection depended on the typhoid toxin CdtB subunit and extended to neighboring, non-infected cells. By cultivating the organoid derived cells into polarized monolayers in air-liquid interphase, we could extend the duration of the infection, and we observed an initial arrest of the cell cycle that does not depend on the typhoid toxin. Non-infected intoxicated cells instead continued to proliferate despite the DNA damage. Our study highlights the importance of the typhoid toxin in causing genomic instability and corroborates the epidemiological link between Salmonella infection and GBC.IMPORTANCE Bacterial infections are increasingly being recognized as risk factors for the development of adenocarcinomas. The strong epidemiological evidence linking Helicobacter pylori infection to stomach cancer has paved the way to the demonstration that bacterial infections cause DNA damage in the host cells, initiating transformation. In this regard, the role of bacterial genotoxins has become more relevant. Salmonella enterica serovars Typhi and Paratyphi A have been clinically associated with gallbladder cancer. By harnessing the stem cell potential of cells from healthy human gallbladder explant, we regenerated and propagated the epithelium of this organ in vitro and used these cultures to model S. Paratyphi A infection. This study demonstrates the importance of the typhoid toxin, encoded only by these specific serovars, in causing genomic instability in healthy gallbladder cells, posing intoxicated cells at risk of malignant transformation.


Assuntos
Dano ao DNA , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Vesícula Biliar/citologia , Salmonella paratyphi A/patogenicidade , Adulto , Idoso , Animais , Células Cultivadas , Feminino , Vesícula Biliar/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Sorogrupo , Virulência/genética
3.
mBio ; 9(6)2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482827

RESUMO

Infection of the human stomach caused by Helicobacter pylori is very common, as the pathogen colonizes more than half of the world's population. It is associated with varied outcomes of infection, such as peptic ulcer disease, gastric ulcers, and mucosa-associated lymphoid tissue lymphoma, and is generally considered a risk factor for the development of gastric adenocarcinoma. Cholesteryl glucosides (CGs) constitute a vital component of the cell wall of H. pylori and contribute to its pathogenicity and virulence. The hp0421 gene, which encodes cholesteryl-α-glucoside transferase (CGT), appears critical for the enzymatic function of integrating unique CGs into the cell wall of H. pylori, and deletion of this gene leads to depletion of CGs and their variants. Herein, we report that the deletion of hp0421 and consequent deficiency of cholesterol alter the morphology, shape, and cell wall composition of H. pylori cells, as demonstrated by high-resolution confocal microscopy and flow cytometry analyses of two different type strains of H. pylori, their isogenic knockouts as well as a reconstituted strain. Moreover, measurement of ethidium bromide (EtBr) influx by flow cytometry showed that lack of CGs increased cell wall permeability. Antimicrobial susceptibility testing revealed that the hp0421 isogenic knockout strains (Hp26695Δ421 and Hp76Δ421) were sensitive to antibiotics, such as fosfomycin, polymyxin B, colistin, tetracycline, and ciprofloxacin, in contrast to the wild-type strains that were resistant to the above antibiotics and tended to form denser biofilms. Lipid profile analysis of both Hp76 and Hp76Δ421 strains showed an aberrant profile of lipopolysaccharides (LPS) in the Hp76Δ421 strain. Taken together, we herein provide a set of mechanistic evidences to demonstrate that CGs play critical roles in the maintenance of the typical spiral morphology of H. pylori and its cell wall integrity, and any alteration in CG content affects the characteristic morphological features and renders the H. pylori susceptible to various antibiotics.IMPORTANCEHelicobacter pylori is an important cause of chronic gastritis leading to peptic ulcer and is a major risk factor for gastric malignancies. Failure in the eradication of H. pylori infection and increasing antibiotic resistance are two major problems in preventing H. pylori colonization. Hence, a deeper understanding of the bacterial survival strategies is needed to tackle the increasing burden of H. pylori infection by an appropriate intervention. Our study demonstrated that the lack of cholesteryl glucosides (CGs) remarkably altered the morphology of H. pylori and increased permeability of the bacterial cell wall. Further, this study highlighted the substantial role of CGs in maintaining the typical H. pylori morphology that is essential for retaining its pathogenic potential. We also demonstrated that the loss of CGs in H. pylori renders the bacterium susceptible to different antibiotics.


Assuntos
Parede Celular/metabolismo , Colesterol/análogos & derivados , Glucosiltransferases/metabolismo , Helicobacter pylori/citologia , Helicobacter pylori/enzimologia , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Colesterol/metabolismo , Citometria de Fluxo , Deleção de Genes , Teste de Complementação Genética , Glucosiltransferases/genética , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Testes de Sensibilidade Microbiana , Microscopia Confocal , Permeabilidade
4.
Mol Psychiatry ; 23(4): 1031-1039, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28485407

RESUMO

In the adult mammalian brain, newborn granule cells are continuously integrated into hippocampal circuits, and the fine-tuning of this process is important for hippocampal function. Thus, the identification of factors that control adult neural stem cells (NSCs) maintenance, differentiation and integration is essential. Here we show that the deletion of the iron trafficking protein lipocalin-2 (LCN2) induces deficits in NSCs proliferation and commitment, with impact on the hippocampal-dependent contextual fear discriminative task. Mice deficient in LCN2 present an increase in the NSCs population, as a consequence of a G0/G1 cell cycle arrest induced by increased endogenous oxidative stress. Of notice, supplementation with the iron-chelating agent deferoxamine rescues NSCs oxidative stress, promotes cell cycle progression and improves contextual fear conditioning. LCN2 is, therefore, a novel key modulator of neurogenesis that, through iron, controls NSCs cell cycle progression and death, self-renewal, proliferation and differentiation and, ultimately, hippocampal function.


Assuntos
Discriminação Psicológica/fisiologia , Lipocalina-2/metabolismo , Neurogênese/fisiologia , Animais , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Giro Denteado/metabolismo , Medo/fisiologia , Hipocampo/citologia , Hipocampo/metabolismo , Lipocalina-2/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo
5.
Genes Immun ; 13(2): 197-201, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21866115

RESUMO

Non-Hodgkin lymphoma (NHL) has been associated with immunological defects, chronic inflammatory and autoimmune conditions. Given the link between immune dysfunction and NHL, genetic variants in toll-like receptors (TLRs) have been regarded as potential predictive factors of susceptibility to NHL. Adequate anti-tumoral responses are known to depend on TLR9 function, such that the use of its synthetic ligand is being targeted as a therapeutic strategy. We investigated the association between the functional rs5743836 polymorphism in the TLR9 promoter and risk for B-cell NHL and its major subtypes in three independent case-control association studies from Portugal (1160 controls, 797 patients), Italy (468 controls, 494 patients) and the US (972 controls, 868 patients). We found that the rs5743836 polymorphism was significantly overtransmitted in both Portuguese (odds ratio (OR), 1.85; P=7.3E-9) and Italian (OR, 1.84; P=6.0E-5) and not in the US cohort of NHL patients. Moreover, the increased transcriptional activity of TLR9 in mononuclear cells from patients harboring rs5743836 further supports a functional effect of this polymorphism on NHL susceptibility in a population-dependent manner.


Assuntos
Linfoma não Hodgkin/genética , Polimorfismo Genético , Receptor Toll-Like 9/genética , Feminino , Genética Populacional , Humanos , Linfoma não Hodgkin/epidemiologia , Masculino , Pessoa de Meia-Idade , Fatores de Risco
6.
Cell Death Differ ; 17(5): 737-45, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19911009

RESUMO

The ease by which yeast can be manipulated in conjunction with their similarities to cells of more complex metazoans makes many yeast species, particularly Saccharomyces cerevisae, very attractive models for the study of conserved evolutionary processes that occur in eukaryotes. The ability to functionally express heterologous genes in these cells has allowed the development of countless new and elegant approaches leading to detailed structure-function analysis of numerous mammalian genes. Of these, the most informative have been the studies involving the analysis of regulators that have no direct or obvious sequence orthologue in yeast, including members of the Bcl-2 family of proteins, caspases and tumour suppressors. Here we review the field and provide evidence that these studies have served to further understand mammalian apoptosis.


Assuntos
Apoptose/fisiologia , Mamíferos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Animais , Humanos , Modelos Biológicos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
7.
Fungal Genet Biol ; 46(12): 919-26, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19686860

RESUMO

Paracoccidioides brasiliensis is characterized by a multiple budding phenotype and a polymorphic cell growth, leading to the formation of cells with extreme variations in shape and size. Since Cdc42 is a pivotal molecule in establishing and maintaining polarized growth for diverse cell types, as well as during pathogenesis of certain fungi, we evaluated its role during cell growth and virulence of the yeast-form of P. brasiliensis. We used antisense technology to knock-down PbCDC42's expression in P. brasiliensis yeast cells, promoting a decrease in cell size and more homogenous cell growth, altering the typical polymorphism of wild-type cells. Reduced expression levels also lead to increased phagocytosis and decreased virulence in a mouse model of infection. We provide genetic evidences underlying Pbcdc42p as an important protein during host-pathogen interaction and the relevance of the polymorphic nature and cell size in the pathogenesis of P. brasiliensis.


Assuntos
Proteínas Fúngicas/metabolismo , Paracoccidioides/citologia , Paracoccidioides/patogenicidade , Paracoccidioidomicose/microbiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Interações Hospedeiro-Patógeno , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Paracoccidioides/genética , Paracoccidioides/fisiologia , Fagocitose , RNA Antissenso , Virulência , Proteína cdc42 de Ligação ao GTP/genética
8.
Biochim Biophys Acta ; 1783(7): 1436-48, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18252203

RESUMO

In order to alter the impact of diseases on human society, drug development has been one of the most invested research fields. Nowadays, cancer and infectious diseases are leading targets for the design of effective drugs, in which the primary mechanism of action relies on the modulation of programmed cell death (PCD). Due to the high degree of conservation of basic cellular processes between yeast and higher eukaryotes, and to the existence of an ancestral PCD machinery in yeast, yeasts are an attractive tool for the study of affected pathways that give insights into the mode of action of both antitumour and antifungal drugs. Therefore, we covered some of the leading reports on drug-induced apoptosis in yeast, revealing that in common with mammalian cells, antitumour drugs induce apoptosis through reactive oxygen species (ROS) generation and altered mitochondrial functions. The evidence presented suggests that yeasts may be a powerful model for the screening/development of PCD-directed drugs, overcoming the problem of cellular specificity in the design of antitumour drugs, but also enabling the design of efficient antifungal drugs, targeted to fungal-specific apoptotic regulators that do not have major consequences for human cells.


Assuntos
Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Apoptose/fisiologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Leveduras/efeitos dos fármacos , Animais , Humanos , Mitocôndrias/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Leveduras/citologia , Leveduras/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA